Геометрическая оптика. Геометрическая оптика книги


Геометрическая оптика

Основные законы геометрической оптики известны ещё с древних времен. Так, Платон (430 г. до н.э.) установил закон прямолинейного распространения света. В трактатах Евклида формулируется закон прямолинейного распространения света и закон равенства углов падения и отражения. Аристотель и Птолемей изучали преломление света. Но точных формулировок этих законов геометрической оптики греческим философам найти не удалось.Геометрическая оптика является предельным случаем волновой оптики, когда длина световой волны стремится к нулю.Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть поняты в рамках геометрической оптики.

В основу формального построения геометрической оптики положено четыре закона, установленных опытным путем:· закон прямолинейного распространения света;· закон независимости световых лучей;· закон отражения;· закон преломления света.Для анализа этих законов Х. Гюйгенс предложил простой и наглядный метод, названный впоследствии принципом Гюйгенса.Каждая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Гюйгенс Христиан (1629–1695), нидерландский ученый. В 1665–1681 гг. работал в Париже. Изобрел (1657) маятниковые часы со спусковым механизмом, дал их теорию, установил законы колебаний физического маятника. Опубликовал в 1690 г. созданную им в 1678 г. волновую теорию света, объяснил двойное лучепреломление. Усовершенствовал телескоп; сконструировал окуляр, названный его именем. Открыл кольцо у Сатурна и его спутник Титан. Автор одного из первых трудов по теории вероятностей (1657 г.).

Основываясь на своем методе, Гюйгенс объяснил прямолинейность распространения света и вывел законы отражения и преломления.Закон прямолинейного распространения света:· свет в оптически однородной среде распространяется прямолинейно.Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их источниками малых размеров.Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит через очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.

Тень, отбрасываемая предметом, обусловлена прямолинейностью распространения световых лучей в оптически однородных средах.Рис 7.1Астрономической иллюстрацией прямолинейного распространения света и, в частности, образования тени и полутени может служить затенение одних планет другими, например затмение Луны, когда Луна попадает в тень Земли (рис. 7.1). Вследствие взаимного движения Луны и Земли тень Земли перемещается по поверхности Луны, и лунное затмение проходит через несколько частных фаз (рис. 7.2).

Рис. 7.2

Закон независимости световых пучков:· эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены. Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо.Закон отражения (рис. 7.3):· отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения;· угол падения α равен углу отражения γ: α = γ

Рис. 7.3

Рис. 7.4

Для вывода закона отражения воспользуемся принципом Гюйгенса. Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела двух сред (рис. 7.4). Когда фронт волны АВ достигнет отражающей поверхности в точке А, эта точка начнет излучать вторичную волну.· Для прохождения волной расстояния ВС требуется время Δt = BC/υ. За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υΔt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения: угол падения α равен углу отражения γ.Закон преломления (закон Снелиуса) (рис. 7.5):· луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; · отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред.

Рис. 7.5

Рис. 7.6

Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела со средой, в которой скорость ее распространения равна u (рис. 7.6).Пусть время, затрачиваемое волной для прохождения пути ВС, равно Dt. Тогда ВС = сDt. За это же время фронт волны, возбуждаемой точкой А в среде со скоростью u, достигнет точек полусферы, радиус которой AD = uDt. Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление ее распространения – лучом III. Из рис. 7.6 видно, что , т.е. .Отсюда следует закон Снелиуса: .Несколько иная формулировка закона распространения света была дана французским математиком и физиком П. Ферма.

Ферма Пьер (1601–1665) – французский математик и физик. Родился в Бомон-де-Ломань. Получил юридическое образование. С 1631 г. был советником парламента в Тулузе.

Физические исследования относятся большей частью к оптике, где он установил в 1662 г. основной принцип геометрической оптики (принцип Ферма). Аналогия между принципом Ферма и вариационными принципами механики сыграла значительную роль в развитии современной динамики и теории оптических инструментов.Согласно принципу Ферма, свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время.Покажем применение этого принципа к решению той же задачи о преломлении света.Луч от источника света S, расположенного в вакууме идет до точки В, расположенной в некоторой среде за границей раздела (рис. 7.7).

Рис. 7.7

В каждой среде кратчайшим путем будут прямые SA и AB. Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB: .Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю: ,отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса: .Принцип Ферма сохранил свое значение до наших дней и послужил основой для общей формулировки законов механики (в том числе теории относительности и квантовой механики).Из принципа Ферма вытекает несколько следствий.Обратимость световых лучей: если обратить луч III (рис. 7.7), заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I.Другой пример – мираж, который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят впереди оазис, но когда приходят туда, кругом оказывается песок. Сущность в том, что мы видим в этом случае свет, прошедший над песком. Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным и скорость света в нем больше, чем в холодном. Поэтому свет проходит не по прямой, а по траектории с наименьшим временем, заворачивая в теплые слои воздуха.Если свет распространяется из среды с большим показателем преломления (оптически более плотной) в среду с меньшим показателем преломления (оптически менее плотной) ( > ), например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α (рис. 7.8 а).

Рис.7.8

С увеличением угла падения увеличивается угол преломления (рис. 7.8 б, в), до тех пор, пока при некотором угле падения ( ) угол преломления не окажется равным π/2.Угол называется предельным углом. При углах падения α > весь падающий свет полностью отражается (рис. 7.8 г).· По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.· Если , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего (рис. 7.8 г). · Таким образом, при углах падения в пределах от до π/2, луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением.Предельный угол определим из формулы: ; .Явление полного отражения используется в призмах полного отражения (Рис. 7.9).

Рис. 7.9

Показатель преломления стекла равен n » 1,5, поэтому предельный угол для границы стекло – воздух = arcsin (1/1,5) = 42°.При падении света на границу стекло – воздух при α > 42° всегда будет иметь место полное отражение.На рис. 7.9 показаны призмы полного отражения, позволяющие:а) повернуть луч на 90°;б) повернуть изображение;в) обернуть лучи.Призмы полного отражения применяются в оптических приборах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломления, измеряя , определяем относительный показатель преломления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления второй среды известен).

Явление полного отражения используется также в световодах, представляющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала.Рис. 7.10В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцевина) которого окружается стеклом – оболочкой из другого стекла с меньшим показателем преломления. Свет, падающий на торец световода под углам больше предельного, претерпевает на поверхности раздела сердцевины и оболочки полное отражение и распространяется только по световедущей жиле.Световоды используются при создании телеграфно-телефонных кабелей большой емкости. Кабель состоит из сотен и тысяч оптических волокон тонких, как человеческий волос. По такому кабелю, толщиной в обычный карандаш, можно одновременно передавать до восьмидесяти тысяч телефонных разговоров.Кроме того, световоды используются в оптоволоконных электронно-лучевых трубках, в электронно-счетных машинах, для кодирования информации, в медицине (например, диагностика желудка), для целей интегральной оптики.

questions-physics.ru

Книги по оптике - Электронные книги

Раздел для книг по оптике, прикладной оптике.

Оптика атмосферного аэрозоля В.Е. Зуев, М.В. Кабанов18.08.2010

Электронная книга: "Оптика атмосферного аэрозоля"   В монографии последовательно и всесторонне обсуждены различные аспекты оптики атмосферного аэрозоля, включая теоретические основы взаимодействия оптического излучения с отдельными частицами и системой частиц, оптические свойства атмосферного аэрозоля и их связь с метеорологическими...

Теория аберраций оптических систем. Автор: Дубовик20.08.2010

  Электронный учебник: "Теория аберраций оптических систем"   Оптической системой называется совокупность оптических деталей (линз, призм, зеркал, пластин, светофильтров и их комбинаций), расположенных относительно друг друга в определенном порядке в соответствии с расчетом и техническими условиями. Как правило, оптические детали,...

Методическое указание по курсу "Основы оптики" Г.А. Можаров, Д.С. Шилков20.08.2010

 Методическое указание по курсу  "Основы оптики"   Авторы: Г.А. Можаров, Д.С. Шилков Настоящее учебное пособие написано в помощь студентам 3-го курса факультета оптического приборостроения при выполнении расчетно-графической работы "Вычисление основных характеристик и конструктивных параметров оптической системы" по курсу "Основы...

Теория аберраций оптических систем | Хроматические аберрации20.08.2010

Электронный учебник "Теория аберраций оптических систем"   Аберрация - погрешность (искажение) изображения в оптических системах. Аберрации бывают монохроматическими и хроматическими. В оптических системах, содержащих оптические детали с преломляющими поверхностями, возникают хроматические аберрации. Они появляются при прохождении через...

Основы оптики методическое пособие26.08.2010

Электронный учебник: "Основы оптики методическое пособие"     Учебник разбит на шесть глав. 1. Введение. Основные законы и понятия геометрической оптики 2. Теория идеальной оптической системы 3. Ограничение пучков лучей в оптической системе 4. Понятие об аберрациях 5. Погрешности. Прямые и косвенные измерения 6. Лабораторные работы:...

4du.ru

Геометрическая оптика

 

Описание

Действие очков на зрение основано на законах распространения света. Наука о законах распространения света и образования изображений с помощью линз называется геометрической, или лучевой, оптикой.

Великий французский математик XVII в. Ферма сформулировал принцип, лежащий в основе геометрической оптики: свет всегда выбирает кратчайший по времени путь между двумя точками. Из этого принципа следует, что в однородной среде свет распространяется прямолинейно: путь луча света из точки 81 в точку 82 представляет собой отрезок прямой. Из этого же принципа выводятся два основных закона геометрической оптики — отражения и преломления света.

ЗАКОНЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ

Если на пути света встречается другая прозрачная среда, отделенная от первой гладкой поверхностью, то луч света отчасти отражается от этой поверхности, отчасти проходит через нее, меняя свое направление. В первом случае говорят об отражении света, во втором — о его преломлении.

Чтобы объяснить законы отражения и преломления света, нужно ввести понятие нормали — перпендикуляра к отражающей или преломляющей поверхности в точке падения луча. Угол между падающим лучом и нормалью в точке падения называется углом падения, а между нормалью и отраженным лучом — углом отражения.

Закон отражения света гласит: падающий и отраженный лучи лежат в одной плоскости с нормалью в точке падения; угол падения равен углу отражения.

 

На рис. 1 показан ход луча между точками S1и S2при его отражении от поверхности А1А2. Перенесем точку S2в S2', находящуюся за отражающей поверхностью. Очевидно, линия S1 S2' будет кратчайшей, если она прямая. Это условие выполняется, когда угол u1=u1' и, следовательно, u1= u2, а также когда прямые OS1,ОТ и OS2 находятся в одной плоскости.

Закон преломления света гласит: падающий и преломленный лучи лежат в одной плоскости с нормалью в точке падения; отношение синуса угла падения к синусу угла преломления для данных двух сред и для лучей данной длины волны есть величина постоянная.

Не приводя расчетов, можно показать, что именно эти условия обеспечивают кратчайшее время прохождения света между двумя точками, находящимися в разных средах (рис. 2).

 

Закон преломления света выражается следующей формулой:

 

Величинаn2,1называется относительным показателем преломления среды 2 по отношению к среде 1.

Показатель преломления данной среды относительно пустоты (практически к ней приравнивают воздушную среду) называется абсолютным показателем преломления данной среды n.

Относительный показатель преломления n2,1связан с абсолютными показателями первой (n1) и второй (n2) среды отношением:

 

Абсолютный показатель определяется оптической плотностью среды: чем больше последняя, тем медленнее распространяется свет в данной среде.

Отсюда второе выражение закона преломления света: синус угла падения так относится к синусу угла преломления, как скорость света в первой среде к скорости света во второй среде:

 

Поскольку свет обладает максимальной скоростью в пустоте (и в воздухе), показатель преломления всех сред больше 1. Так, для воды он составляет 1,333, для оптического стекла разных сортов — от 1,487 до 1,806, для органического стекла (метилметакрилата) —1,490, для алмаза— 2,417. В глазу оптические среды имеют следующие показатели преломления: роговица—1,376, водянистая влага и стекловидное тело —1,336, хрусталик —1,386.

ХОД ЛУЧЕЙ ЧЕРЕЗ ПРИЗМУ

Рассмотрим некоторые частные случаи преломления света. Одним из простейших является прохождение света через призму. Она представляет собой узкий клин из стекла или другого прозрачного материала, находящийся в воздухе.

 

На рис. 3 показан ход лучей через призму. Она отклоняет лучи света по направлению к основанию. Для наглядности профиль призмы выбран в виде прямоугольного треугольника, а падающий луч параллелен его основанию. При этом преломление луча происходит только на задней, косой грани призмы. Угол w, на который отклоняется падающий луч, называется отклоняющим углом призмы. Он практически не зависит от направления падающего луча: если последний не перпендикулярен грани падения, то отклоняющий угол слагается из углов преломления на обеих гранях.

Отклоняющий угол призмы приблизительно равен произведению величины угла при ее вершине на показатель преломления вещества призмы минус 1:

 

Вывод этой формулы следует из рис. 3. Проведем перпендикуляр ко второй грани призмы в точке падения на нее луча (штрихпунктирная линия). Он образует с падающим лучом угол ?. Этот угол равен углу ? при вершине призмы, так как их стороны взаимно перпендикулярны. Так как призма тонкая и все рассматриваемые углы малы, можно считать их синусы приблизительно равными самим углам, выраженным в радианах. Тогда из закона преломления света следует:

 

В этом выражении nстоит в знаменателе, так как свет идет из более плотной среды в менее плотную.

Поменяем местами числитель и знаменатель, а также заменим угол ? на равный ему угол ?:

 

Поскольку показатель преломления стекла, обычно применяемого для очковых линз, близок к 1,5, отклоняющий угол призм примерно вдвое меньше угла при их вершине. Поэтому в очках редко применяются призмы с отклоняющим углом более 5°; они будут слишком толстыми и тяжелыми. В оптометрии отклоняющее действие призм (призматическое действие) чаще измеряют не в градусах, а в призменных диоптриях (?) или в сантирадианах (срад). Отклонение лучей призмой силой в 1прдптр (1 срад) на расстоянии 1 м от призмы составляет 1 см. Это соответствует углу, тангенс которого равен 0,01. Такой угол равен 34' (рис. 4).

 

Поэтому приближенно можно считать, что отклоняющее действие призмы в призменных диоптриях вдвое больше, чем в градусах (1прдптр = 1 срад ? 0,5°).

Это же относится и к самому дефекту зрения, косоглазию, исправляемому призмами. Угол косоглазия можно измерять в градусах и в призменных диоптриях.

ХОД ЛУЧЕЙ ЧЕРЕЗ ЛИНЗУ

Наибольшее значение для оптометрии имеет прохождение света через линзы. Линзой называют тело из прозрачного материала, ограниченное двумя преломляющими поверхностями, из которых хотя бы одна является поверхностью вращения.

Рассмотрим простейшую линзу—тонкую, ограниченную одной сферической и одной плоской поверхностью. Такую линзу называют сферической. Она представляет собой сегмент, отпиленный от стеклянного шара (рис. 5, а). Линия АО, соединяющая центр шара с центром линзы, называется ее оптической осью. На разрезе такую линзу можно представить как пирамиду, сложенную из маленьких призм с нарастающим углом при вершине (рис. 5, б).

 

Лучи, входящие в линзу и параллельные ее оси, претерпевают преломление тем большее, чем дальше они отстоят от оси. Можно показать, что все они пересекут оптическую ось в одной точке (F'). Эта точка называется фокусом линзы (точнее, задним фокусом). Такую же точку имеет и линза с вогнутой преломляющей поверхностью, но ее фокус находится с той же стороны, откуда входят лучи. Расстояние от фокусной точки до центра линзы называется ее фокусным расстоянием (f'). Величина, обратная фокусному расстоянию, характеризует преломляющую силу, или рефракцию, линзы (D):

 

гдеD — преломляющая сила линзы, дптр; f' — фокусное расстояние, м;

Преломляющая сила линзы измеряется в диоптриях. Это основная единица в оптометрии. За 1 диоптрию (D, дптр) принята преломляющая сила линзы с фокусным расстоянием 1 м. Следовательно, линза с фокусным расстоянием 0,5 м обладает преломляющей силой 2,0дптр, 2 м —0,5 дптр и т. д. Преломляющая сила выпуклых линз имеет положительное значение, вогнутых — отрицательное.

Не только лучи, параллельные оптической оси, проходя через выпуклую сферическую линзу, сходятся в одной точке. Лучи, исходящие из любой точки слева от линзы (не ближе фокусной), сходятся в другую точку справа от нее. Благодаря этому сферическая линза обладает свойством формировать изображения предметов (рис. 6).

 

Так же как плосковыпуклые и плосковогнутые линзы, действуют линзы, ограниченные двумя сферическими поверхностями,— двояковыпуклые, двояковогнутые и выпукло-вогнутые. В очковой оптике применяются главным образом выпукло-вогнутые линзы, или мениски. От того, какая поверхность имеет большую кривизну, зависит общее действие линзы.

Действие сферических линз называют стигматическим (от греч. — точка), так как они формируют изображение точки в пространстве в виде точки.

Следующие виды линз — цилиндрические и торические. Выпуклая цилиндрическая линза имеет свойство собирать падающий на нее пучок параллельных лучей в линию, параллельную оси цилиндра (рис. 7). Прямую F1F2аналогии с фокусной точкой сферической линзы называют фокальной линией.

 

Цилиндрическая поверхность при пересечении ее плоскостями, проходящими через оптическую ось, образует в сечениях окружность, эллипсы и прямую. Два таких сечения называются главными: одно проходит через ось цилиндра, другое — перпендикулярно ему. В первом сечении образуется прямая, во втором — окружность. Соответственно в цилиндрической линзе различают два главных сечения, или меридиана,— ось и деятельное сечение. Нормальные лучи, падающие на ось линзы, не подвергаются преломлению, а падающие на деятельное сечение, собираются на фокальной линии, в точке ее пересечения с оптической осью.

Более сложной является линза с торической поверхностью, которая образуется при вращении окружности или дуги радиусом rвокруг оси. Радиус вращения R не равен радиусу r(рис. 8).

 

Преломление лучей торической линзой показано на рис. 9.

 

Торическая линза состоит как бы из двух сферических: радиус одной из них соответствует радиусу вращаемой окружности, радиус второй — радиусу вращения. Соответственно линза имеет два главных сечения (А1А2и В1В2). Падающий на нее параллельный пучок лучей преобразуется в фигуру, называемую коноидом Штурма. Вместо фокусной точки лучи собираются в два отрезка прямых, лежащих в плоскости главных сечений. Они называются фокальными линиями — передней (F1F1) и задней (F2F2).

Свойство преобразовывать пучок параллельных или идущих от точки лучей в коноид Штурма называют астигматизмом (буквально «бесточие»), а цилиндрические и торические линзы— астигматическими линзами. Мерой астигматизма является разность преломляющей силы в двух главных сечениях (в диоптриях). Чем больше астигматическая разность, тем больше расстояние между фокальными линиями в коноиде Штурма.

Астигматическим действием характеризуется и любая сферическая линза, если лучи падают на нее под большим углом к оптической оси. Это явление называют астигматизмом косого падения (или косых пучков).

В оптометрии приходится иметь дело еще с одним видом линз— с афокальными линзами. Афокальной называется такая линза, обе сферические поверхности которой имеют одинаковый радиус, но одна из них вогнутая, а другая выпуклая (рис. 10, а).

Такая линза не имеет фокуса и, следовательно, не может формировать изображение. Но, находясь на пути светового пучка, несущего изображение, она его увеличивает (если свет идет справа налево) или уменьшает (если свет идет слева направо). Такое действие афокальной линзы называется эйконическим (от греч. - изображение). Чаще для этого применяют не одиночные линзы, а их системы, например телескопы. На рис. 10, б, показана схема простейшего телескопа, состоящего из одной отрицательной и одной положительной линзы (система Галилея).

Эйконическое действие присуще и обычным сферическим линзам: положительные линзы увеличивают, а отрицательные — уменьшают изображение. Измеряют это действие в процентах, а при больших увеличениях — в «крагах» (х). Так, лупа, увеличивающая изображение в 2раза, называется двукратной (2х).

Таким образом, линзы осуществляют четыре вида оптического действия: призматическое, стигматическое, астигматическое и эйконическое. Далее будет показано, как все они используются для коррекции дефектов зрения.

Отметим, что в большинстве случаев для линз характерно не только, то действие, для которого они предназначены: сферическим (стигматическим) линзам присуще также и эйконическое действие, а на периферии стекла, кроме того, призматическое и астигматическое. Астигматические линзы характеризуются также стигматическим, призматическим и эйконическим действием.

СЛОЖНЫЕ ОПТИЧЕСКИЕ СИСТЕМЫ

До сих пор речь шла об идеальных линзах, как бы не имеющих толщины (за исключением афокальных). В оптометрии приходится иметь дело с линзами, имеющими реальную толщину, а еще чаще с системами линз.

Особый интерес представляют центрированные системы, т. е. такие, которые состоят из сферических линз, имеющих общую оптическую ось. Для описания таких систем и расчета их действия применяют два способа: с введением так называемых кардинальных точек и плоскостей; с использованием понятия сходимости лучей и вершинной рефракции.

Первый способ, разработанный немецким математиком Гауссом, заключается в следующем. На оптической оси системы выделяют четыре Кардинальные точки: две узловые и две главные (рис. 11).

 

 

Узловые точки — передняя и задняя (Nи N') — обладают следующим свойством: луч, входящий в переднюю точку (S1N), выходит параллельно самому себе из задней (N’S2). Их применяют при построении изображений, формируемых оптической системой.

Гораздо большее значение имеют главные точки (Ни Н'). Перпендикулярные к оптической оси плоскости, проведенные через них, называются главными плоскостями — передней и задней. Луч света, входящий в одну из них, проходит до другой параллельно оптической оси. Иначе говоря, изображение на задней главной плоскости повторяет изображение на передней. Все расстояния на оптической оси отсчитывают от главных плоскостей: до объекта—от передней, до изображения — от задней. Часто эти плоскости лежат так близко друг к другу, что приближенно могут быть заменены одной главной плоскостью.

Так, например, в оптической системе человеческого глаза передняя главная плоскость лежит в 1,47 мм, а задняя — в 1,75 мм от вершины роговицы. При расчетах принимают, что обе они расположены приблизительно в 1,6 мм от этой точки.

Второй способ описания центрированных оптических систем предполагает, что пучку лучей в каждой точке на оптической оси присуще особое свойство — сходимость. Она определяется величиной, обратной расстоянию до точки схождения этого пучка, и измеряется, так же как и рефракция, в диоптриях. Действие каждой преломляющей поверхности на пути пучка— это изменение сходимости. Выпуклые поверхности увеличивают сходимость, вогнутые — уменьшают. Сходимость параллельного пучка лучей равна нулю.

Этот способ особенно удобен для расчета суммарной преломляющей силы системы. Типичной сложной оптической системой является толстая линза (рис. 12), имеющая две преломляющие поверхности и однородную среду между ними.

 

Изменения сходимости падающего на линзу параллельного пучка лучей определяются преломляющей силой этих поверхностей, расстоянием между ними и показателем преломления материала линзы.

Примем следующие обозначения:
  • L0— сходимость параллельного пучка, падающего на линзу;
  • L1— сходимость пучка после преломления на первой поверхности линзы;
  • L2— сходимость пучка при достижении второй поверхности линзы;
  • L3— сходимость пучка после преломления на второй поверхности, т. е. при выходе из линзы;
  • D1- преломляющая сила первой поверхности;
  • D2— преломляющая сила второй поверхности;
  • d— расстояние между поверхностями линзы;
  • n— показатель преломления материала линзы.

 

 

 

При этом величины L иD измеряются в диоптриях, а d-b— в метрах.

Сходимость пучка на входе в линзу L0 = 0.

После преломления на передней поверхности ЛИНЗЫ она становится равной L1=D1. При достижении задней поверхности она приобретает значение:

 

и, наконец, при выходе из линзы

 

Это выражение показывает изменение сходимости пучка при прохождении через линзу при отсчете расстояний от ее передней поверхности. Оно называется передней вершинной рефракцией линзы. Если рассматривать ход лучей от задней поверхности к передней, то в знаменателе D1заменится на D2. Выражение

 

представляет собой величину задней вершинной рефракции толстой линзы. Значения силы линз в пробных наборах очковых стекол и представляют собой их задние вершинные рефракции.

Числитель этого выражения является формулой для определения суммарной преломляющей силы системы, состоящей из двух элементов (поверхностей или тонких линз):

 

гдеD — суммарная преломляющая сила системы;

D1и D2— преломляющая сила элементов системы;

n— показатель преломления среды между элементами;

d- расстояние между элементами системы.

 

zreni.ru

Геометрическая оптика - это... Что такое Геометрическая оптика?

Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Краеугольным приближением геометрической оптики является понятие светового луча. В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.

В силу того, что свет представляет собой волновое явление, имеет место интерференция, в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т.е имеет место дифракция. Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.

Кроме отсутствия волновых эффектов, в геометрической оптике пренебрегают также квантовыми эффектами. Как правило, скорость распространения света считается бесконечной (вследствие чего динамическая физическая задача превращается в геометрическую), однако учёт конечной скорости света в рамках геометрической оптики (например, в астрофизических приложениях) не представляет трудности. Кроме того, как правило, не рассматриваются эффекты, связанные с откликом среды на прохождение лучей света. Эффекты такого рода, даже формально лежащие в рамках геометрической оптики, относят к нелинейной оптике. В случае, когда интенсивность светового пучка, распространяющегося в данной среде, достаточно мала для того, чтобы можно было пренебречь нелинейными эффектами, геометрическая оптика базируется на общем для всех разделов оптики фундаментальном законе о независимом распространении лучей. Согласно нему лучи при встрече с другими лучами продолжает распространяться в том же направлении, не изменив амплитуды, частоты, фазы и плоскости поляризации электрического вектора световой волны. В этом смысле лучи света не влияют друг на друга и распространяются независимо. Результирующая картина распределения интенсивности поля излучения во времени и пространстве при взаимодействии лучей может быть объяснена явлением интерференции.

Не учитывает геометрическая оптика также и поперечного характера световой волны. Вследствие этого в геометрической оптике не рассматривается поляризация света и связанные с ней эффекты.

Законы геометрической оптики

В основе геометрической оптики лежат несколько простых эмпирических законов:

  1. Закон прямолинейного распространения света
  2. Закон независимого распространения лучей
  3. Закон отражения света
  4. Закон преломления света (Закон Снелла)
  5. Закон обратимости светового луча. Согласно ему, луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

Поскольку геометрическая оптика не учитывает волновой природы света, в ней действует постулат, согласно которому если в какой-то точке сходятся две (или большее количество) систем лучей, то освещённости, создаваемые ими, складываются.

Однако наиболее последовательным является вывод законов геометрической оптики из волновой оптики в эйкональном приближении. В этом случае, основным уравнением геометрической оптики становится уравнение эйконала, которое допускает также словесную интерпретацию в виде принципа Ферма, из которого и выводятся перечисленные выше законы.

Частным видом геометрической оптики является матричная оптика.

Разделы геометрической оптики

Среди разделов геометрической оптики стоит отметить

  • расчёт оптических систем в параксиальном приближении
  • распространение света вне параксиального приближения, формирование каустик и прочих особенностей световых фронтов.
  • распространение света в неоднородных и неизотропных средах (градиентная оптика)
  • распространение света в волноводах и оптоволокне
  • распространение света в гравитационных полях массивных астрофизических объектов, гравитационное линзирование.

История исследований

Евклид в «Оптике» показал прямолинейность распространения света.

Клавдий Птолемей исследовал преломление света на границе воздух—вода и воздух—стекло. Большую роль в развитии оптики, как науки сыграли ученые Востока, такими как ученые Азербайджана Бахманияр аль Азербайджани и Насреддин Туси. Они также имели свой взгляд на природу света и указывали, что свет имеет как свойства волны, так и свойства потока частиц. Арабский учёный Ибн ал-Хайсам (Аль-Гасан) изучал законы преломления и отражения света. Одним из первых высказал мысль о том, что источником световых лучей является не глаз, а светящиеся предметы. Он также в частности доказал, что изображение предмета возникает в хрусталике глаза. Он сумел получить изображения предметов в плоских, выпуклых, вогнутых, цилиндрических стеклах и линзах, а также показал, что выпуклая линза дает увеличенное изображение.

Иоганн Кеплер в трактате «Дополнения к Виттелию» («Оптическая астрономия», 1604) изложил основы геометрической оптики, сформулировал закон об обратно пропорциональной зависимости освещённости и квадрата расстояния от источника.

Виллеброрд Снелл в 1621 году открыл закон преломления света (закон Снеллиуса).

Ссылки

dvc.academic.ru

Геометрическая оптика - это... Что такое Геометрическая оптика?

Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Краеугольным приближением геометрической оптики является понятие светового луча. В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.

В силу того, что свет представляет собой волновое явление, имеет место интерференция, в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т.е имеет место дифракция. Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.

Кроме отсутствия волновых эффектов, в геометрической оптике пренебрегают также квантовыми эффектами. Как правило, скорость распространения света считается бесконечной (вследствие чего динамическая физическая задача превращается в геометрическую), однако учёт конечной скорости света в рамках геометрической оптики (например, в астрофизических приложениях) не представляет трудности. Кроме того, как правило, не рассматриваются эффекты, связанные с откликом среды на прохождение лучей света. Эффекты такого рода, даже формально лежащие в рамках геометрической оптики, относят к нелинейной оптике. В случае, когда интенсивность светового пучка, распространяющегося в данной среде, достаточно мала для того, чтобы можно было пренебречь нелинейными эффектами, геометрическая оптика базируется на общем для всех разделов оптики фундаментальном законе о независимом распространении лучей. Согласно нему лучи при встрече с другими лучами продолжает распространяться в том же направлении, не изменив амплитуды, частоты, фазы и плоскости поляризации электрического вектора световой волны. В этом смысле лучи света не влияют друг на друга и распространяются независимо. Результирующая картина распределения интенсивности поля излучения во времени и пространстве при взаимодействии лучей может быть объяснена явлением интерференции.

Не учитывает геометрическая оптика также и поперечного характера световой волны. Вследствие этого в геометрической оптике не рассматривается поляризация света и связанные с ней эффекты.

Законы геометрической оптики

В основе геометрической оптики лежат несколько простых эмпирических законов:

  1. Закон прямолинейного распространения света
  2. Закон независимого распространения лучей
  3. Закон отражения света
  4. Закон преломления света (Закон Снелла)
  5. Закон обратимости светового луча. Согласно ему, луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

Поскольку геометрическая оптика не учитывает волновой природы света, в ней действует постулат, согласно которому если в какой-то точке сходятся две (или большее количество) систем лучей, то освещённости, создаваемые ими, складываются.

Однако наиболее последовательным является вывод законов геометрической оптики из волновой оптики в эйкональном приближении. В этом случае, основным уравнением геометрической оптики становится уравнение эйконала, которое допускает также словесную интерпретацию в виде принципа Ферма, из которого и выводятся перечисленные выше законы.

Частным видом геометрической оптики является матричная оптика.

Разделы геометрической оптики

Среди разделов геометрической оптики стоит отметить

  • расчёт оптических систем в параксиальном приближении
  • распространение света вне параксиального приближения, формирование каустик и прочих особенностей световых фронтов.
  • распространение света в неоднородных и неизотропных средах (градиентная оптика)
  • распространение света в волноводах и оптоволокне
  • распространение света в гравитационных полях массивных астрофизических объектов, гравитационное линзирование.

История исследований

Евклид в «Оптике» показал прямолинейность распространения света.

Клавдий Птолемей исследовал преломление света на границе воздух—вода и воздух—стекло. Большую роль в развитии оптики, как науки сыграли ученые Востока, такими как ученые Азербайджана Бахманияр аль Азербайджани и Насреддин Туси. Они также имели свой взгляд на природу света и указывали, что свет имеет как свойства волны, так и свойства потока частиц. Арабский учёный Ибн ал-Хайсам (Аль-Гасан) изучал законы преломления и отражения света. Одним из первых высказал мысль о том, что источником световых лучей является не глаз, а светящиеся предметы. Он также в частности доказал, что изображение предмета возникает в хрусталике глаза. Он сумел получить изображения предметов в плоских, выпуклых, вогнутых, цилиндрических стеклах и линзах, а также показал, что выпуклая линза дает увеличенное изображение.

Иоганн Кеплер в трактате «Дополнения к Виттелию» («Оптическая астрономия», 1604) изложил основы геометрической оптики, сформулировал закон об обратно пропорциональной зависимости освещённости и квадрата расстояния от источника.

Виллеброрд Снелл в 1621 году открыл закон преломления света (закон Снеллиуса).

Ссылки

dic.academic.ru